login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015222
Even square pyramidal numbers.
2
14, 30, 140, 204, 506, 650, 1240, 1496, 2470, 2870, 4324, 4900, 6930, 7714, 10416, 11440, 14910, 16206, 20540, 22140, 27434, 29370, 35720, 38024, 45526, 48230, 56980, 60116, 70210, 73810, 85344, 89440, 102510, 107134, 121836, 127020, 143450, 149226, 167480, 173880
OFFSET
1,1
COMMENTS
Square pyramidal numbers k*(k + 1)*(2*k + 1)/6 are even if and only when k is congruent to 0 or 3 mod 4. - Artur Jasinski, Oct 22 2008
FORMULA
Even entries in A000330.
From Artur Jasinski, Oct 22 2008: (Start)
(2*k + 1)/(k + 2)*binomial(k + 2, 5) if k congruent to 0 or 3 mod 4, and
k*(k + 1)*(2*k + 1)/6 if k congruent to 0 or 3 mod 4. (End)
G.f.: 2*x*(7+x*(8+x*(34+x*(8+7*x)))) / ((-1+x)^4*(1+x)^3). - Harvey P. Dale, May 05 2011 [adapted to the offset by Bruno Berselli, May 16 2011]
From Ant King, Oct 17 2012: (Start)
a(n) = (3 + 4*n - (-1)^n)*(2 + 4*n - (-1)^n)*(1 + 4*n - (-1)^n)/24.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 128. (End)
6*a(n) = (1+2*n)*(8*n^2+8*n-6*(-1)^n*n+3-3*(-1)^n). - R. J. Mathar, Oct 17 2012
From Amiram Eldar, Mar 07 2022: (Start)
Sum_{n>=1} 1/a(n) = 18 + 6*sqrt(2)*log(2-sqrt(2)) - 3*(sqrt(2)+5)*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi*(sqrt(2)+1/2) - 18. (End)
MATHEMATICA
Select[ Table[ n(n+1)(2n+1)/6, {n, 100} ], EvenQ ]
Select[Rest[CoefficientList[Series[(x(x+1))/(x-1)^4, {x, 0, 80}], x]], EvenQ] (* Harvey P. Dale, May 05 2011 *)
CROSSREFS
Sequence in context: A075208 A228124 A293391 * A054103 A344397 A161454
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
STATUS
approved