OFFSET
1,1
COMMENTS
Square pyramidal numbers k*(k + 1)*(2*k + 1)/6 are even if and only when k is congruent to 0 or 3 mod 4. - Artur Jasinski, Oct 22 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
Even entries in A000330.
From Artur Jasinski, Oct 22 2008: (Start)
(2*k + 1)/(k + 2)*binomial(k + 2, 5) if k congruent to 0 or 3 mod 4, and
k*(k + 1)*(2*k + 1)/6 if k congruent to 0 or 3 mod 4. (End)
G.f.: 2*x*(7+x*(8+x*(34+x*(8+7*x)))) / ((-1+x)^4*(1+x)^3). - Harvey P. Dale, May 05 2011 [adapted to the offset by Bruno Berselli, May 16 2011]
From Ant King, Oct 17 2012: (Start)
a(n) = (3 + 4*n - (-1)^n)*(2 + 4*n - (-1)^n)*(1 + 4*n - (-1)^n)/24.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 128. (End)
6*a(n) = (1+2*n)*(8*n^2+8*n-6*(-1)^n*n+3-3*(-1)^n). - R. J. Mathar, Oct 17 2012
From Amiram Eldar, Mar 07 2022: (Start)
Sum_{n>=1} 1/a(n) = 18 + 6*sqrt(2)*log(2-sqrt(2)) - 3*(sqrt(2)+5)*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi*(sqrt(2)+1/2) - 18. (End)
MATHEMATICA
Select[ Table[ n(n+1)(2n+1)/6, {n, 100} ], EvenQ ]
Select[Rest[CoefficientList[Series[(x(x+1))/(x-1)^4, {x, 0, 80}], x]], EvenQ] (* Harvey P. Dale, May 05 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
STATUS
approved