login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015220
Even tetrahedral numbers.
1
0, 4, 10, 20, 56, 84, 120, 220, 286, 364, 560, 680, 816, 1140, 1330, 1540, 2024, 2300, 2600, 3276, 3654, 4060, 4960, 5456, 5984, 7140, 7770, 8436, 9880, 10660, 11480, 13244, 14190, 15180, 17296, 18424, 19600, 22100, 23426, 24804, 27720, 29260, 30856, 34220, 35990
OFFSET
0,2
FORMULA
From Ant King, Oct 19 2012: (Start)
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 64 + 3*a(n-3) - 3*a(n-6) + a(n-9).
G.f.: 2*x*(2+3*x+5*x^2+12*x^3+5*x^4+3*x^5+2*x^6) / ((1-x)^4*(1+x+x^2)^3).
Sum_{n>=1} 1/a(n) = 3/2*(1-log(2)). (End)
From Amiram Eldar, Mar 07 2022: (Start)
a(n) = A000292(A004772(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/2 + 9*sqrt(2)*log(sqrt(2)+1)/2. (End)
MATHEMATICA
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {0, 4, 10, 20, 56, 84, 120, 220, 286, 364}, 41] (* Ant King, Oct 19 2012 *)
Select[Table[(Times@@(n+{0, 1, 2}))/6, {n, 0, 60}], EvenQ] (* Harvey P. Dale, Jan 22 2013 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
a(0) prepended by Amiram Eldar, Mar 07 2022
STATUS
approved