OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
FORMULA
From Ant King, Oct 19 2012: (Start)
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 64 + 3*a(n-3) - 3*a(n-6) + a(n-9).
G.f.: 2*x*(2+3*x+5*x^2+12*x^3+5*x^4+3*x^5+2*x^6) / ((1-x)^4*(1+x+x^2)^3).
Sum_{n>=1} 1/a(n) = 3/2*(1-log(2)). (End)
From Amiram Eldar, Mar 07 2022: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/2 + 9*sqrt(2)*log(sqrt(2)+1)/2. (End)
MATHEMATICA
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {0, 4, 10, 20, 56, 84, 120, 220, 286, 364}, 41] (* Ant King, Oct 19 2012 *)
Select[Table[(Times@@(n+{0, 1, 2}))/6, {n, 0, 60}], EvenQ] (* Harvey P. Dale, Jan 22 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
a(0) prepended by Amiram Eldar, Mar 07 2022
STATUS
approved