login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056412
Number of step cyclic shifted sequences using a maximum of four different symbols.
8
4, 10, 20, 55, 76, 430, 460, 2605, 5164, 26962, 38572, 367645, 431780, 3203430, 8993804, 33860125, 63177820, 636462350, 803796700, 6886280971, 17456594380, 79965550558, 139069427020, 1466861706095, 2251803181492, 14434628481170, 37066691779180, 214483458079665, 354963555781060, 4803855154772166
OFFSET
1,1
COMMENTS
See A056371 for an explanation of step shifts. Under step cyclic shifts, abcde, bdace, bcdea, cdeab and daceb etc. are equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
D. Z. Dokovic, I. Kotsireas et al., Charm bracelets and their application to the construction of periodic Golay pairs, arXiv:1405.7328 [math.CO], 2014.
R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
FORMULA
Refer to Titsworth or slight "simplification" in Nester.
MATHEMATICA
M[j_, L_] := Module[{m = 1}, While[Sum[j^i, {i, 0, m-1}] ~Mod~ L != 0, m++]; m]; c[j_, t_, n_] := Sum[1/M[j, n / GCD[n, u*(j-1) + t]], {u, 0, n - 1}]; CB[n_, k_] = If[n==1, k, 1/(n*EulerPhi[n]) * Sum[ If[1 == GCD[n, j], k^c[j, t, n], 0] , {t, 0, n-1}, {j, 1, n-1}]]; Table[Print[cb = CB[n, 4]]; cb, {n, 1, 30}] (* Jean-François Alcover, Dec 04 2015, after Joerg Arndt *)
PROG
(PARI) \\ see p.3 of the Dokovic et al. reference
M(j, L)={my(m=1); while ( sum(i=0, m-1, j^i) % L != 0, m+=1 ); m; }
c(j, t, n)=sum(u=0, n-1, 1/M(j, n / gcd(n, u*(j-1)+t) ) );
CB(n, k)=if (n==1, k, 1/(n*eulerphi(n)) * sum(t=0, n-1, sum(j=1, n-1, if(1==gcd(n, j), k^c(j, t, n), 0) ) ) );
for(n=1, 66, print1(CB(n, 4), ", "));
\\ Joerg Arndt, Aug 27 2014
CROSSREFS
Row 4 of A285548.
Cf. A002729.
Sequence in context: A019498 A237626 A020149 * A032275 A220828 A015220
KEYWORD
nonn
EXTENSIONS
Added more terms, Joerg Arndt, Aug 27 2014
STATUS
approved