login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344394
a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).
2
1, 1, 2, 5, 9, 25, 44, 133, 230, 726, 1242, 4037, 6853, 22737, 38376, 129285, 217242, 740554, 1239980, 4266830, 7123765, 24701425, 41141916, 143567173, 238637282, 837212650, 1389206210, 4896136845, 8112107475, 28703894775, 47495492400, 168640510725, 278722764954
OFFSET
0,3
COMMENTS
Related to the Motzkin triangle A064189 counting certain lattice paths.
FORMULA
a(n) = Sum_{j = 0..n} C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)).
a(n) = A064189(n, floor(n/2)), the middle column of the Motzkin triangle.
a(n) = A026300(n, ceiling(n/2)).
MAPLE
alias(C=binomial):
a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);
MATHEMATICA
a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];
Table[a[n], {n, 0, 32}]
CROSSREFS
Cf. A026300, A064189, A026302 (even bisection), A344396 (odd bisection), A327871.
Sequence in context: A364267 A006405 A305189 * A243559 A334077 A136108
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, May 19 2021
STATUS
approved