login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).
2

%I #15 Dec 23 2024 21:50:32

%S 1,1,2,5,9,25,44,133,230,726,1242,4037,6853,22737,38376,129285,217242,

%T 740554,1239980,4266830,7123765,24701425,41141916,143567173,238637282,

%U 837212650,1389206210,4896136845,8112107475,28703894775,47495492400,168640510725,278722764954

%N a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).

%C Related to the Motzkin triangle A064189 counting certain lattice paths.

%F a(n) = Sum_{j = 0..n} C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)).

%F a(n) = A064189(n, floor(n/2)), the middle column of the Motzkin triangle.

%F a(n) = A026300(n, ceiling(n/2)).

%p alias(C=binomial):

%p a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);

%t a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];

%t Table[a[n], {n, 0, 32}]

%Y Cf. A026300, A064189, A026302 (even bisection), A344396 (odd bisection), A327871.

%K nonn,changed

%O 0,3

%A _Peter Luschny_, May 19 2021