login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344392
T(n, k) = k!*Stirling2(n - k, k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.
0
1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 6, 0, 1, 14, 6, 0, 1, 30, 36, 0, 1, 62, 150, 24, 0, 1, 126, 540, 240, 0, 1, 254, 1806, 1560, 120, 0, 1, 510, 5796, 8400, 1800, 0, 1, 1022, 18150, 40824, 16800, 720, 0, 1, 2046, 55980, 186480, 126000, 15120
OFFSET
0,9
COMMENTS
The antidiagonal representation of the Fubini numbers (A131689).
EXAMPLE
Triangle starts:
[ 0] [1]
[ 1] [0]
[ 2] [0, 1]
[ 3] [0, 1]
[ 4] [0, 1, 2]
[ 5] [0, 1, 6]
[ 6] [0, 1, 14, 6]
[ 7] [0, 1, 30, 36]
[ 8] [0, 1, 62, 150, 24]
[ 9] [0, 1, 126, 540, 240]
[10] [0, 1, 254, 1806, 1560, 120]
[11] [0, 1, 510, 5796, 8400, 1800]
MAPLE
T := (n, k) -> k!*Stirling2(n - k, k):
seq(seq(T(n, k), k=0..n/2), n = 0..11);
CROSSREFS
Cf. A105795 (row sums).
Sequence in context: A330891 A089627 A306534 * A331787 A321686 A055925
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, May 17 2021
STATUS
approved