login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026302
a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.
3
1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980, 7123765, 41141916, 238637282, 1389206210, 8112107475, 47495492400, 278722764954, 1638970147188, 9654874654438, 56965811111240, 336590781348276, 1991357644501170
OFFSET
0,2
LINKS
D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
FORMULA
a(n) = binomial(2*n,n)*hypergeom([ -n/2, 1/2 - n/2],[n+2],4). - Mark van Hoeij, Jun 02 2010
a(n) = (n + 1) * A006605(n). - Mark van Hoeij, Jul 02 2010
G.f. A(x)=(x*M(x))', where M(x)=1+x*M(x)^2+x^2*M(x)^4. - Vladimir Kruchinin, May 25 2012
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] ((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2))^(n+1).
a(n) = [x^n] (1/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...)))))))^(n+1), a continued fraction. (End)
From Vaclav Kotesovec, Sep 17 2019: (Start)
Recurrence: 3*n^2*(3*n + 1)*(3*n + 2)*(13*n - 9)*a(n) = 2*(n+1)*(2*n - 1)*(455*n^3 - 315*n^2 - 44*n + 24)*a(n-1) + 36*n*(n+1)*(2*n - 3)*(2*n - 1)*(13*n + 4)*a(n-2).
a(n) ~ sqrt(277 + 89*sqrt(13)) * (70 + 26*sqrt(13))^n / (13^(1/4) * sqrt(2*Pi*n) * 3^(3*n + 5/2)). (End)
MAPLE
b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
`if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)+b(x-2, y+1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 28 2019
MATHEMATICA
Table[Binomial[2*n, n]*Hypergeometric2F1[1/2 - n/2, -n/2, 2 + n, 4], {n, 0, 30}] (* Vaclav Kotesovec, Sep 17 2019 *)
PROG
(PARI) A026300(n, k)={ if(n<0 || k < 0, return(0) ; ) ; if(n<=1, 1, if(k==0, 1, sum(i=0, k/2, binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i)-binomial(2*i+n-k, i-1))) ; ) ; ) ; }
A026302(n)={ A026300(2*n, n) ; }
{ for(n=0, 21, print(n, " ", A026302(n))) ; } \\ R. J. Mathar, Oct 26 2006
CROSSREFS
Bisection of A026307.
Sequence in context: A162356 A364476 A339440 * A214460 A124889 A317134
KEYWORD
nonn
EXTENSIONS
Corrected by R. J. Mathar, Oct 26 2006
STATUS
approved