login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.
3

%I #46 Dec 01 2023 03:24:55

%S 1,2,9,44,230,1242,6853,38376,217242,1239980,7123765,41141916,

%T 238637282,1389206210,8112107475,47495492400,278722764954,

%U 1638970147188,9654874654438,56965811111240,336590781348276,1991357644501170

%N a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.

%H Alois P. Heinz, <a href="/A026302/b026302.txt">Table of n, a(n) for n = 0..1280</a>

%H D. Kruchinin and V. Kruchinin, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Kruchinin/kruchinin5.html">A Method for Obtaining Generating Function for Central Coefficients of Triangles</a>, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.

%F a(n) = binomial(2*n,n)*hypergeom([ -n/2, 1/2 - n/2],[n+2],4). - _Mark van Hoeij_, Jun 02 2010

%F a(n) = (n + 1) * A006605(n). - _Mark van Hoeij_, Jul 02 2010

%F G.f. A(x)=(x*M(x))', where M(x)=1+x*M(x)^2+x^2*M(x)^4. - _Vladimir Kruchinin_, May 25 2012

%F From _Ilya Gutkovskiy_, Sep 21 2017: (Start)

%F a(n) = [x^n] ((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2))^(n+1).

%F a(n) = [x^n] (1/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...)))))))^(n+1), a continued fraction. (End)

%F From _Vaclav Kotesovec_, Sep 17 2019: (Start)

%F Recurrence: 3*n^2*(3*n + 1)*(3*n + 2)*(13*n - 9)*a(n) = 2*(n+1)*(2*n - 1)*(455*n^3 - 315*n^2 - 44*n + 24)*a(n-1) + 36*n*(n+1)*(2*n - 3)*(2*n - 1)*(13*n + 4)*a(n-2).

%F a(n) ~ sqrt(277 + 89*sqrt(13)) * (70 + 26*sqrt(13))^n / (13^(1/4) * sqrt(2*Pi*n) * 3^(3*n + 5/2)). (End)

%p b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,

%p `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)+b(x-2, y+1)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 28 2019

%t Table[Binomial[2*n, n]*Hypergeometric2F1[1/2 - n/2, -n/2, 2 + n, 4], {n, 0, 30}] (* _Vaclav Kotesovec_, Sep 17 2019 *)

%o (PARI) A026300(n,k)={ if(n<0 || k < 0, return(0) ;) ; if(n<=1, 1, if(k==0, 1, sum(i=0,k/2, binomial(n,2*i+n-k)*(binomial(2*i+n-k,i)-binomial(2*i+n-k,i-1))) ;) ;) ; }

%o A026302(n)={ A026300(2*n,n) ; }

%o { for(n=0,21, print(n," ",A026302(n))) ; } \\ _R. J. Mathar_, Oct 26 2006

%Y Bisection of A026307.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E Corrected by _R. J. Mathar_, Oct 26 2006