login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344396 a(n) = binomial(2*n + 1, n)*hypergeom([-(n + 1)/2, -n/2], [n + 2], 4). 1
1, 5, 25, 133, 726, 4037, 22737, 129285, 740554, 4266830, 24701425, 143567173, 837212650, 4896136845, 28703894775, 168640510725, 992671051482, 5853000551090, 34562387229046, 204368928058958, 1209916827501876, 7170955214476509, 42543879586512435, 252638095187722437 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Related to the Motzkin triangle A064189 counting certain lattice paths.

LINKS

Table of n, a(n) for n=0..23.

FORMULA

a(n) = Sum_{j=0..2*n+1)} C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)).

a(n) = A064189(2*n+1, n).

a(n) = A026300(2*n+1, n+1).

a(n) ~ sqrt((5242 + 18674/sqrt(13))/2187) * ((70 + 26*sqrt(13))/27)^n / sqrt(Pi*n). - Vaclav Kotesovec, May 19 2021

MAPLE

alias(C=binomial):

a := n -> add(C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)), j = 0..2*n+1): seq(a(n), n=0..23);

MATHEMATICA

a[n_] := Binomial[2 n + 1, n] Hypergeometric2F1[-(n + 1)/2, -n/2, n + 2, 4];

Table[a[n], {n, 0, 23}]

CROSSREFS

Cf. A064189, A026300, A344394, A327871.

Sequence in context: A094602 A207834 A351187 * A351587 A225963 A222570

Adjacent sequences:  A344393 A344394 A344395 * A344397 A344398 A344399

KEYWORD

nonn

AUTHOR

Peter Luschny, May 19 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 11:28 EDT 2022. Contains 353908 sequences. (Running on oeis4.)