|
|
A344396
|
|
a(n) = binomial(2*n + 1, n)*hypergeom([-(n + 1)/2, -n/2], [n + 2], 4).
|
|
1
|
|
|
1, 5, 25, 133, 726, 4037, 22737, 129285, 740554, 4266830, 24701425, 143567173, 837212650, 4896136845, 28703894775, 168640510725, 992671051482, 5853000551090, 34562387229046, 204368928058958, 1209916827501876, 7170955214476509, 42543879586512435, 252638095187722437
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Related to the Motzkin triangle A064189 counting certain lattice paths.
|
|
LINKS
|
Table of n, a(n) for n=0..23.
|
|
FORMULA
|
a(n) = Sum_{j=0..2*n+1)} C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)).
a(n) = A064189(2*n+1, n).
a(n) = A026300(2*n+1, n+1).
a(n) ~ sqrt((5242 + 18674/sqrt(13))/2187) * ((70 + 26*sqrt(13))/27)^n / sqrt(Pi*n). - Vaclav Kotesovec, May 19 2021
|
|
MAPLE
|
alias(C=binomial):
a := n -> add(C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)), j = 0..2*n+1): seq(a(n), n=0..23);
|
|
MATHEMATICA
|
a[n_] := Binomial[2 n + 1, n] Hypergeometric2F1[-(n + 1)/2, -n/2, n + 2, 4];
Table[a[n], {n, 0, 23}]
|
|
CROSSREFS
|
Cf. A064189, A026300, A344394, A327871.
Sequence in context: A094602 A207834 A351187 * A351587 A225963 A222570
Adjacent sequences: A344393 A344394 A344395 * A344397 A344398 A344399
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Peter Luschny, May 19 2021
|
|
STATUS
|
approved
|
|
|
|