login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351187
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 6*x)) / (1 + 6*x).
4
1, 1, 1, -5, 25, -131, 793, -6137, 60049, -670919, 7930321, -96775853, 1225237609, -16333089227, 232150489129, -3531321746465, 57178717416097, -975918663642767, 17400776511175201, -322309002081819221, 6188520430773389881, -123166171374344928275, 2542231599282355411897
OFFSET
0,4
COMMENTS
Shifts 2 places left under 6th-order inverse binomial transform.
FORMULA
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-6)^k * a(n-k-2).
MATHEMATICA
nmax = 22; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 + 6 x)]/(1 + 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-6)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 04 2022
STATUS
approved