login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207834 G.f.: exp( Sum_{n>=1} 5*L(n)*x^n/n ), where L(n) = Fibonacci(n-1)^n + Fibonacci(n+1)^n. 5
1, 5, 25, 130, 1295, 38861, 4227075, 1309117220, 1123176929475, 2564594183278115, 15604715134340991949, 251021373648740285348860, 10668788238489683954523431475, 1195322752666989652479885363067075, 352750492054485236937115646128341734205 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Compare the definition to the g.f. of the Fibonacci numbers:

1/(1-x-x^2) = exp( Sum_{n>=1} Lucas(n)*x^n/n ), where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1).

LINKS

Table of n, a(n) for n=0..14.

EXAMPLE

G.f.: A(x) = 1 + 5*x + 25*x^2 + 130*x^3 + 1295*x^4 + 38861*x^5 +...

such that, by definition,

log(A(x))/5 = x + 5*x^2/2 + 28*x^3/3 + 641*x^4/4 + 33011*x^5/5 +...+ (Fibonacci(n-1)^n + Fibonacci(n+1)^n)*x^n/n +...

PROG

(PARI) {L(n)=fibonacci(n-1)^n+fibonacci(n+1)^n}

{a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)}

for(n=0, 51, print1(a(n), ", "))

CROSSREFS

Cf. A207835, A156216, A166168.

Sequence in context: A184139 A102893 A094602 * A351187 A344396 A351587

Adjacent sequences:  A207831 A207832 A207833 * A207835 A207836 A207837

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)