login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207834 G.f.: exp( Sum_{n>=1} 5*L(n)*x^n/n ), where L(n) = Fibonacci(n-1)^n + Fibonacci(n+1)^n. 5
1, 5, 25, 130, 1295, 38861, 4227075, 1309117220, 1123176929475, 2564594183278115, 15604715134340991949, 251021373648740285348860, 10668788238489683954523431475, 1195322752666989652479885363067075, 352750492054485236937115646128341734205 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Compare the definition to the g.f. of the Fibonacci numbers:

1/(1-x-x^2) = exp( Sum_{n>=1} Lucas(n)*x^n/n ), where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1).

LINKS

Table of n, a(n) for n=0..14.

EXAMPLE

G.f.: A(x) = 1 + 5*x + 25*x^2 + 130*x^3 + 1295*x^4 + 38861*x^5 +...

such that, by definition,

log(A(x))/5 = x + 5*x^2/2 + 28*x^3/3 + 641*x^4/4 + 33011*x^5/5 +...+ (Fibonacci(n-1)^n + Fibonacci(n+1)^n)*x^n/n +...

PROG

(PARI) {L(n)=fibonacci(n-1)^n+fibonacci(n+1)^n}

{a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)}

for(n=0, 51, print1(a(n), ", "))

CROSSREFS

Cf. A207835, A156216, A166168.

Sequence in context: A184139 A102893 A094602 * A225963 A222570 A144818

Adjacent sequences:  A207831 A207832 A207833 * A207835 A207836 A207837

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 11:43 EST 2019. Contains 329999 sequences. (Running on oeis4.)