This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207834 G.f.: exp( Sum_{n>=1} 5*L(n)*x^n/n ), where L(n) = Fibonacci(n-1)^n + Fibonacci(n+1)^n. 5
 1, 5, 25, 130, 1295, 38861, 4227075, 1309117220, 1123176929475, 2564594183278115, 15604715134340991949, 251021373648740285348860, 10668788238489683954523431475, 1195322752666989652479885363067075, 352750492054485236937115646128341734205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Given g.f. A(x), note that A(x)^(1/5) is not an integer series. Compare the definition to the g.f. of the Fibonacci numbers: 1/(1-x-x^2) = exp( Sum_{n>=1} Lucas(n)*x^n/n ), where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1). LINKS EXAMPLE G.f.: A(x) = 1 + 5*x + 25*x^2 + 130*x^3 + 1295*x^4 + 38861*x^5 +... such that, by definition, log(A(x))/5 = x + 5*x^2/2 + 28*x^3/3 + 641*x^4/4 + 33011*x^5/5 +...+ (Fibonacci(n-1)^n + Fibonacci(n+1)^n)*x^n/n +... PROG (PARI) {L(n)=fibonacci(n-1)^n+fibonacci(n+1)^n} {a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)} for(n=0, 51, print1(a(n), ", ")) CROSSREFS Cf. A207835, A156216, A166168. Sequence in context: A184139 A102893 A094602 * A225963 A222570 A144818 Adjacent sequences:  A207831 A207832 A207833 * A207835 A207836 A207837 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 11:43 EST 2019. Contains 329999 sequences. (Running on oeis4.)