OFFSET
0,2
COMMENTS
Given g.f. A(x), note that A(x)^(1/5) is not an integer series.
Compare the definition to the g.f. of the Fibonacci numbers:
1/(1-x-x^2) = exp( Sum_{n>=1} Lucas(n)*x^n/n ), where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1).
EXAMPLE
G.f.: A(x) = 1 + 15*x + 200*x^2 + 3525*x^3 + 134355*x^4 + 16781664*x^5 +...
such that, by definition,
log(A(x))/5 = 3*x + 35*x^2/2 + 990*x^3/3 + 75059*x^4/4 + 14931339*x^5/5 + 7778817074*x^6/6 +...+ (Fibonacci((n-1)^2) + Fibonacci((n+1)^2))*x^n/n +...
PROG
(PARI) {L(n)=fibonacci((n-1)^2)+fibonacci((n+1)^2)}
{a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 20 2012
STATUS
approved