login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014896
a(1) = 1, a(n) = 13*a(n-1) + n.
3
1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 27342891567355, 355457590375629, 4620948674883192, 60072332773481512, 780940326055259673, 10152224238718375767, 131978915103338884990
OFFSET
1,2
FORMULA
a(n) = 15*a(n-1)-27*a(n-2)+13*a(n-3), with a(1)=1, a(2)=15, a(3)=198. - Vincenzo Librandi, Oct 20 2012
G.f.: x/((1-13*x)*(1-x)^2). - Jinyuan Wang, Mar 11 2020
MAPLE
a:=n->sum((13^(n-j)-1)/12, j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 05 2007
a:= n-> (Matrix([[1, 0, 1], [1, 1, 1], [0, 0, 13]])^n)[2, 3]:
seq(a(n), n=1..17); # Alois P. Heinz, Aug 06 2008
MATHEMATICA
LinearRecurrence[{15, -27, 13}, {1, 15, 198}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
PROG
(Magma) I:=[1, 15, 198]; [n le 3 select I[n] else 15*Self(n-1) - 27*Self(n-2)+ 13*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
(Maxima)
a[1]:1$
a[2]:15$
a[3]:198$
a[n]:=15*a[n-1]-27*a[n-2]+13*a[n-3]$
A014896(n):=a[n]$ makelist(A014896(n), n, 1, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
Sequence in context: A180789 A078264 A322914 * A048444 A002007 A207835
KEYWORD
nonn,easy
STATUS
approved