login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131964
Expansion of f(x^2, x^10) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
8
1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 3, 0, 0, 0, 2, 1, 1, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 2, 1, 2, 0, 2, 2, 1, 1, 0, 0, 1
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x^4) * psi(-x^6) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-19/24) * eta(q^2) * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, -2, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -2, ...].
a(25*n + 19) = a(n). a(25*n + 4) = a(25*n + 9) = a(25*n + 14) = a(25*n + 24) = 0.
2 * a(n) = A123484(24*n + 19).
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + x^5 + x^6 + x^8 + 2*x^10 + x^11 + x^12 + x^13 + ...
G.f. = q^19 + q^43 + q^67 + 2*q^91 + q^139 + q^163 + q^211 + 2*q^259 + q^283 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 19}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) EllipticTheta[ 4, 0, x^4] QPochhammer[ -x, x] EllipticTheta[ 2, Pi/4, x^3], {x, 0, n}]; (* Michael Somos, Nov 03 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 24*n + 19; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)), n))};
CROSSREFS
Cf. A123484.
Sequence in context: A363037 A330667 A116377 * A356241 A091430 A362221
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 02 2007
STATUS
approved