login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191336 (A022838 mod 2)+(A054406 mod 2) 5
1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A022838: Beatty sequence for r=sqrt(3),

A054406: Beatty sequence for s=(3+sqrt(3))/2 (complement

of A022838), so that

A191336(n)=([nr] mod 2)+([ns] mod 2), where [ ]=floor.

A191336(n)=(number of odd numbers in {[nr],[ns]}).

LINKS

Table of n, a(n) for n=1..132.

FORMULA

a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(3), s=r/(r-1), and [ ]=floor.

MATHEMATICA

r = Sqrt[3]; s = r/(r - 1); h = 320;

u = Table[Floor[n*r], {n, 1, h}] (* A022838 *)

v = Table[Floor[n*s], {n, 1, h}] (* A054406 *)

w = Mod[u, 2] + Mod[v, 2] (* A191336 *)

Flatten[Position[w, 0]]   (* A191337 *)

Flatten[Position[w, 1]]   (* A191338 *)

Flatten[Position[w, 2]]   (* A191339 *)

CROSSREFS

Cf. A191329, A191337, A191338, A191339.

Sequence in context: A093829 A113447 A137608 * A277349 A078807 A208249

Adjacent sequences:  A191333 A191334 A191335 * A191337 A191338 A191339

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jun 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 16:31 EST 2019. Contains 329396 sequences. (Running on oeis4.)