login
A191336
(A022838 mod 2)+(A054406 mod 2)
5
1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0
OFFSET
1,3
COMMENTS
A022838: Beatty sequence for r=sqrt(3),
A054406: Beatty sequence for s=(3+sqrt(3))/2 (complement
of A022838), so that
A191336(n)=([nr] mod 2)+([ns] mod 2), where [ ]=floor.
A191336(n)=(number of odd numbers in {[nr],[ns]}).
FORMULA
a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(3), s=r/(r-1), and [ ]=floor.
MATHEMATICA
r = Sqrt[3]; s = r/(r - 1); h = 320;
u = Table[Floor[n*r], {n, 1, h}] (* A022838 *)
v = Table[Floor[n*s], {n, 1, h}] (* A054406 *)
w = Mod[u, 2] + Mod[v, 2] (* A191336 *)
Flatten[Position[w, 0]] (* A191337 *)
Flatten[Position[w, 1]] (* A191338 *)
Flatten[Position[w, 2]] (* A191339 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 01 2011
STATUS
approved