
2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 26, 28, 30, 33, 35, 37, 40, 42, 44, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 115, 118, 120, 123, 125, 127, 130, 132, 134, 137, 139, 141, 144, 146
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers k such that A194979(k+1) = A194979(k).  Clark Kimberling, Dec 02 2014


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
Eric Weisstein's World of Mathematics, Beatty Sequence
Index entries for sequences related to Beatty sequences


MAPLE

A054406 := proc(n) n*(3+sqrt(3))/2 ; floor(%) ; end proc: # R. J. Mathar, Feb 26 2011


MATHEMATICA

a054406[n_Integer] := Floor[# (3 + Sqrt[3])/2] & /@ Range[n]; a054406[62] (* Michael De Vlieger, Dec 14 2014 *)


PROG

(Magma) [Floor(n*(3+Sqrt(3))/2): n in [1..70]]; // Vincenzo Librandi, Oct 25 2011
(PARI) is(n)=sqrtint((n+1)^2\3)==sqrtint(n^2\3) \\ Charles R Greathouse IV, Nov 01 2021


CROSSREFS

Cf. A194143 (partial sums), A182778 (even bisection), A184799 (prime terms).
Cf. A022838 (complement), A026255.
Cf. A194979.
Sequence in context: A024812 A047349 A329842 * A292647 A356085 A307645
Adjacent sequences: A054403 A054404 A054405 * A054407 A054408 A054409


KEYWORD

nonn


AUTHOR

Eric W. Weisstein


STATUS

approved

