OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
a(n+1) = floor(n/3)+2*n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(2+2*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = n + floor(4*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-24-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)
MAPLE
seq(floor(n/3)+2*n, n=0..52); # Gary Detlefs, Mar 27 2010
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 2, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved