login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047349
Numbers that are congruent to {0, 2, 4} mod 7.
1
0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, 39, 42, 44, 46, 49, 51, 53, 56, 58, 60, 63, 65, 67, 70, 72, 74, 77, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 105, 107, 109, 112, 114, 116, 119, 121, 123, 126, 128, 130, 133, 135, 137, 140, 142
OFFSET
1,2
FORMULA
a(n+1) = floor(n/3)+2*n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(2+2*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = n + floor(4*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-24-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)
MAPLE
seq(floor(n/3)+2*n, n=0..52); # Gary Detlefs, Mar 27 2010
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 2, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A111495 A187686 A024812 * A329842 A054406 A292647
KEYWORD
nonn,easy
STATUS
approved