

A329842


Beatty sequence for (13+sqrt(109))/10.


3



2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, 39, 42, 44, 46, 49, 51, 53, 56, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 86, 89, 91, 93, 96, 98, 100, 103, 105, 107, 110, 112, 114, 117, 119, 121, 124, 126, 128, 131, 133, 135, 138, 140, 142
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let r = (13+sqrt(109))/10. Then (floor(n*r)) and (floor(n*r + 3r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.


LINKS

Table of n, a(n) for n=1..61.
Eric Weisstein's World of Mathematics, Beatty Sequence.
Index entries for sequences related to Beatty sequences


FORMULA

a(n) = floor(n*s), where s = (13+sqrt(109))/10.


MATHEMATICA

t = 3/5; r = Simplify[(2  t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r  1)];
Table[Floor[r*n], {n, 1, 200}] (* A329841 *)
Table[Floor[s*n], {n, 1, 200}] (* A329842 *)


CROSSREFS

Cf. A329825, A329841 (complement).
Sequence in context: A187686 A024812 A047349 * A054406 A292647 A307645
Adjacent sequences: A329839 A329840 A329841 * A329843 A329844 A329845


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Dec 31 2019


STATUS

approved



