login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329845
Beatty sequence for (3+sqrt(29))/5.
3
1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 102, 103, 105, 107
OFFSET
1,2
COMMENTS
Let r = (3+sqrt(29))/5. Then (floor(n*r)) and (floor(n*r + 4r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
FORMULA
a(n) = floor(n*r), where r = (3+sqrt(29))/5.
MATHEMATICA
t = 4/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
Table[Floor[r*n], {n, 1, 200}] (* A329845 *)
Table[Floor[s*n], {n, 1, 200}] (* A329846 *)
CROSSREFS
Cf. A329825, A329846 (complement).
Sequence in context: A188046 A244644 A047220 * A329993 A064994 A138235
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 02 2020
STATUS
approved