login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138235 a(n) = floor(n*(6 + sqrt(6))/5). 7
1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 113, 114 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Beatty sequence for (6+sqrt(6))/5; complement of A022840;

a(n) = A138236(A022840(n)) and A138236(a(n)) = A022840(n).

Numbers k such that A248515(k+1) = A248515(k) = least number h such that 1 - h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...). - Clark Kimberling, Jun 16 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.

Eric Weisstein's World of Mathematics, Beatty Sequence

Index entries for sequences related to Beatty sequences

MATHEMATICA

With[{c=6+Sqrt[6]}, Table[Floor[(n*c)/5], {n, 80}]] (* Harvey P. Dale, Feb 25 2013 *)

PROG

(MAGMA) [Floor(n*(6+Sqrt(6))/5): n in [1..70]]; // Vincenzo Librandi, Jun 17 2015

CROSSREFS

Cf. A248515, A022840 (complement).

Sequence in context: A329845 A329993 A064994 * A329833 A059541 A189682

Adjacent sequences:  A138232 A138233 A138234 * A138236 A138237 A138238

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Mar 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 09:14 EST 2022. Contains 350475 sequences. (Running on oeis4.)