

A138235


a(n) = floor(n*(6 + sqrt(6))/5).


7



1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 113, 114
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Beatty sequence for (6+sqrt(6))/5; complement of A022840;
Numbers k such that A248515(k+1) = A248515(k) = least number h such that 1  h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...).  Clark Kimberling, Jun 16 2015


LINKS



MATHEMATICA

With[{c=6+Sqrt[6]}, Table[Floor[(n*c)/5], {n, 80}]] (* Harvey P. Dale, Feb 25 2013 *)


PROG



CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



