The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022840 Beatty sequence for sqrt(6). 21
 2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 137, 139, 142, 144, 146 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Complement of A138235; a(n) = A138236(A138235(n)) and A138236(a(n)) = A138235(n). - Reinhard Zumkeller, Mar 07 2008 Numbers k such that A248515(k+1) = A248515(k) + 1 = 1 + least number h such that 1 - h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...). - Clark Kimberling, Jun 16 2015 LINKS Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller) Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15. Eric Weisstein's World of Mathematics, Beatty Sequence Index entries for sequences related to Beatty sequences MATHEMATICA Table[Floor[n Sqrt[6]], {n, 70}] (* Vincenzo Librandi, Jun 17 2015 *) PROG (Haskell) a022840 = floor . (* sqrt 6) . fromIntegral -- Reinhard Zumkeller, Sep 14 2014 (Magma) [Floor(n*Sqrt(6)): n in [1..60]]; // Vincenzo Librandi, Jun 17 2015 (PARI) a(n) = floor(n*sqrt(6)) \\ Iain Fox, Nov 20 2017 CROSSREFS Cf. A010464 (sqrt(6)), A138235 (complement), A248515. Sequence in context: A329834 A059542 A190324 * A329994 A064995 A329846 Adjacent sequences: A022837 A022838 A022839 * A022841 A022842 A022843 KEYWORD nonn AUTHOR Clark Kimberling STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 03:03 EST 2023. Contains 367422 sequences. (Running on oeis4.)