login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190324
n + [n*r/s] + [n*t/s]; r=1, s=sinh(Pi/2), t=cosh(Pi/2).
3
2, 4, 7, 9, 12, 14, 17, 19, 21, 24, 26, 30, 32, 35, 37, 39, 42, 44, 47, 49, 52, 54, 57, 60, 62, 65, 67, 70, 72, 75, 77, 79, 82, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 110, 113, 115, 118, 120, 123, 125, 128, 130, 133, 135, 137, 141, 143, 146, 148, 151, 153, 155, 158, 160, 163, 165, 169, 171, 173, 176, 178, 181, 183, 186, 188, 191, 193, 196
OFFSET
1,1
COMMENTS
See A190323.
LINKS
FORMULA
A190323: f(n) = n + [n*sinh(Pi/2)] + [n*cosh(Pi/2)].
A190324: g(n) = n + [n*csch(Pi/2)] + [n*coth(Pi/2)].
A190325: h(n) = n + [n*sech(Pi/2)] + [n*tanh(Pi/2)].
MATHEMATICA
r=1; s=Sinh[Pi/2]; t=Cosh[Pi/2];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (*A190323*)
Table[g[n], {n, 1, 120}] (*A190324*)
Table[h[n], {n, 1, 120}] (*A190325*)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/sinh(Pi/2)) + floor(n/tanh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018
(Magma) R:=RealField(); [n + Floor(n/Sinh(Pi(R)/2)) + Floor(n*Tanh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018
CROSSREFS
Sequence in context: A189681 A329834 A059542 * A022840 A329994 A064995
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 08 2011
STATUS
approved