The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190323 n + [n*s/r] + [n*t/r]; r=1, s=sinh(Pi/2), t=cosh(Pi/2). 3
 5, 11, 16, 23, 28, 34, 40, 46, 51, 58, 63, 69, 74, 81, 86, 92, 98, 104, 109, 116, 121, 127, 132, 139, 144, 150, 156, 162, 167, 174, 179, 185, 190, 197, 202, 208, 214, 220, 225, 232, 237, 243, 248, 255, 260, 266, 272, 278, 283, 290, 295, 301, 306, 313, 319, 324, 331, 336, 342, 348, 354, 359, 365, 371, 377, 382, 389, 394, 400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that f(n) = n + [n*s/r] + [n*t/r], g(n) = n + [n*r/s] + [n*t/s], h(n) = n + [n*r/t] + [n*s/t], where []=floor. Taking r=1, s=sinh(Pi/2), t=cosh(Pi/2) gives f=A190323, g=A190324, h=A190325. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A190323:  f(n) = n + [n*sinh(Pi/2)] + [n*cosh(Pi/2)]. A190324:  g(n) = n + [n*csch(Pi/2)] + [n*coth(Pi/2)]. A190325:  h(n) = n + [n*sech(Pi/2)] + [n*tanh(Pi/2)]. MATHEMATICA r=1; s=Sinh[Pi/2]; t=Cosh[Pi/2]; f[n_] := n + Floor[n*s/r] + Floor[n*t/r]; g[n_] := n + Floor[n*r/s] + Floor[n*t/s]; h[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[f[n], {n, 1, 120}]  (* A190323 *) Table[g[n], {n, 1, 120}]  (* A190324 *) Table[h[n], {n, 1, 120}]  (* A190325 *) PROG (PARI) for(n=1, 100, print1(n + floor(n*sinh(Pi/2)) + floor(n*cosh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018 (MAGMA) R:=RealField(); [n + Floor(n*Sinh(Pi(R)/2)) + Floor(n*Cosh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018 CROSSREFS Cf. A190324, A190325. Sequence in context: A272666 A314174 A314175 * A314176 A314177 A314178 Adjacent sequences:  A190320 A190321 A190322 * A190324 A190325 A190326 KEYWORD nonn AUTHOR Clark Kimberling, May 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:34 EST 2021. Contains 349415 sequences. (Running on oeis4.)