login
A329839
Beatty sequence for (-1+sqrt(41))/4.
3
1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89
OFFSET
1,2
COMMENTS
Let r = (-1+sqrt(41))/4. Then (floor(n*r)) and (floor(n*r + 5r/2)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
FORMULA
a(n) = floor(n*r), where r = (-1+sqrt(41))/5.
MATHEMATICA
t = 5/2; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
Table[Floor[r*n], {n, 1, 200}] (* A329839 *)
Table[Floor[s*n], {n, 1, 200}] (* A329840 *)
CROSSREFS
Cf. A329825, A329840 (complement).
Sequence in context: A104401 A184421 A329978 * A039070 A059553 A249245
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 31 2019
STATUS
approved