login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206919
Sum of binary palindromes <= n.
1
0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 25, 25, 25, 25, 40, 40, 57, 57, 57, 57, 78, 78, 78, 78, 78, 78, 105, 105, 105, 105, 136, 136, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 214, 214, 214, 214, 214, 214, 265, 265, 265, 265, 265, 265, 265, 265
OFFSET
0,4
COMMENTS
Sum of binary palindromes A006995(k) <= n.
Different from A206920.
FORMULA
a(n) = Sum_{k=1..A206915(A206913(n))} A006995(k).
a(n) = A206920(A206915(A206913(n))).
Let p = A206913(n) > 3, m = floor(log_2(p)), then
a(n) = (8/7)*((3/4)*(4-(-1)^m)/(3+(-1)^m)*2^(3*floor(m/2))-1) + (floor(p/2^floor(m/2)) mod 2)*p + 2^m + 1 + Sum_{k=1..floor(m/2)-1} (floor(p/2^k) mod 2)*(2^k+2^(m-k)+2^(m-floor(m/2)+1)*(4^(floor(m/2)-k-1)-1)+(2-(-1)^m)*2^floor(m/2)+2^(floor(m/2)-k)*(p-floor((p mod (2^(m-k+1)))/2^k)*2^k)). - [Corrected; missing factor to the sum term (2-(-1)^m) pasted by the author, Sep 08 2018]
EXAMPLE
a(2)=1, since the only binary palindromes <= 1 are p=0 and p=1;
a(5)=9, since the sum of all binary palindromes <= 5 is 9 = 0 + 1 + 3 + 5.
PROG
(PARI) a(n) = sum(k=1, n, my(b=binary(k)); if (b==Vecrev(b), k)); \\ Michel Marcus, Sep 09 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Feb 18 2012
STATUS
approved