login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206918
Sum of binary palindromes p < 2^n.
2
0, 1, 4, 16, 40, 136, 328, 1096, 2632, 8776, 21064, 70216, 168520, 561736, 1348168, 4493896, 10785352, 35951176, 86282824, 287609416, 690262600, 2300875336, 5522100808, 18407002696, 44176806472, 147256021576, 353414451784, 1178048172616, 2827315614280
OFFSET
0,3
COMMENTS
Partial sums of A206917.
Partial sums of A052955(n) terms of A006995; for example: A052955(4)=7, the sum of the first 7 terms of A006995 is 0+1+3+5+7+15+17=40 which equals a(4).
FORMULA
a(n) = sum(k=0..n, A206917(k)).
a(n) = sum(k=1..A052955(n), A006995(k)).
a(n) = sum(k=1..(1/2)*(5-(-1)^n)*2^floor(n/2)-1, A006995(k)).
a(n) = (8/7)*((3/4)*((4-(-1)^n)/(3+(-1)^n))*2^(3*floor(n/2))-1).
G.f.: x*(1+3*x+4*x^2)/((x-1)*(8*x^2-1)). - Alois P. Heinz, Feb 28 2012
EXAMPLE
a(0) = 0, since p=0 is the only binary palindrome p<2^0;
a(3) = 16, since p=0, 1, 3, 5, 7 are the only binary palindromes < 2^3 and 0+1+3+5+7=16.
CROSSREFS
See A016116 for the number of binary palindromes between 2^(n-1) and 2^n.
See A052995 for the number of binary palindromes < 2^n.
See A206917 for the sum of binary palindromes between 2^(n-1) and 2^n.
Sequence in context: A331574 A110477 A007057 * A056373 A018828 A323847
KEYWORD
nonn,base,easy
AUTHOR
Hieronymus Fischer, Feb 18 2012
STATUS
approved