login
A005580
Least number of distinct prime factors in odd numbers having an abundancy index > n.
(Formerly M2740)
1
3, 8, 21, 54, 141, 372, 995, 2697, 7397, 20502, 57347, 161658, 458788, 1309626, 3757383, 10828011, 31326513, 90945528
OFFSET
2,1
COMMENTS
The abundancy index of a number k is sigma(k)/k. - T. D. Noe, May 08 2006
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
Richard Laatsch, Measuring the abundancy of integers, Mathematics Magazine 59 (2) (1986) 84-92.
FORMULA
a(n) = A005579(2n)-1. - T. D. Noe, May 08 2006
MATHEMATICA
prod=1; k=1; Table[While[prod<=n, k++; prod=prod*Prime[k]/(Prime[k]-1)]; k, {n, 2, 12}] (* T. D. Noe, May 08 2006 *)
CROSSREFS
Cf. A005579 (least number of distinct prime factors in even numbers having an abundancy index > n).
Sequence in context: A242452 A190139 A335807 * A292619 A231222 A231436
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
Edited by T. D. Noe, May 08 2006
a(14)-a(19) from the data at A005579 added by Amiram Eldar, Mar 21 2019
STATUS
approved