login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199900
Number of -n..n arrays x(0..4) of 5 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.
1
33, 159, 461, 1043, 2031, 3573, 5839, 9021, 13333, 19011, 26313, 35519, 46931, 60873, 77691, 97753, 121449, 149191, 181413, 218571, 261143, 309629, 364551, 426453, 495901, 573483, 659809, 755511, 861243, 977681, 1105523, 1245489, 1398321
OFFSET
1,1
COMMENTS
Row 5 of A199898.
LINKS
FORMULA
Empirical: a(n) = (11/12)*n^4 + (49/6)*n^3 + (193/12)*n^2 + (41/6)*n + 1.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: x*(33 - 6*x - 4*x^2 - 2*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=6:
.-4...-2....0....2....0....2....0....0...-5....2...-1...-2...-4....3...-6...-6
..3....2....3...-4....1...-3...-3....6....5...-1....4....0....6...-6....1....6
.-1...-1...-5....0....0....3....6....0...-3....1...-3....5...-1....2...-1...-1
..6....5....0...-2....5...-3...-3...-6....5...-5....5....0....1...-3....6....4
.-4...-4....2....4...-6....1....0....0...-2....3...-5...-3...-2....4....0...-3
CROSSREFS
Cf. A199898.
Sequence in context: A005904 A207078 A182588 * A086504 A233064 A183776
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved