login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199902
Number of -n..n arrays x(0..6) of 7 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.
1
171, 1783, 8823, 30199, 82555, 193689, 406575, 783989, 1413739, 2414499, 3942247, 6197307, 9431995, 13958869, 20159583, 28494345, 39511979, 53860591, 72298839, 95707807, 125103483, 161649841, 206672527, 261673149, 328344171, 408584411
OFFSET
1,1
COMMENTS
Row 7 of A199898.
LINKS
FORMULA
Empirical: a(n) = (151/180)*n^6 + (163/15)*n^5 + (377/9)*n^4 + (395/6)*n^3 + (7429/180)*n^2 + (93/10)*n + 1.
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: x*(171 + 586*x - 67*x^2 - 104*x^3 + 25*x^4 - 8*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=6:
.-3....0....1....1....3....1....0....3....0....0...-5...-3....0....3....0....4
..4....4...-2....0...-1...-5....0...-4....0....2....3....5...-6....0...-6....0
.-2...-2....3...-3....3....1...-5....3...-1....0....0....0....1...-5....4...-3
..5....1....0....5...-6...-3....5...-5....1...-5....6...-6...-6....2...-5....2
.-3...-1...-5...-6....4....5...-1....4....0....4...-3....0....6...-1....3...-5
..5....1....5....4...-5...-3....5...-2...-4....0....2....6...-1....5...-2....5
.-6...-3...-2...-1....2....4...-4....1....4...-1...-3...-2....6...-4....6...-3
CROSSREFS
Cf. A199898.
Sequence in context: A036518 A187133 A185838 * A251223 A186868 A185611
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved