OFFSET
1,3
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k: T(n,k)=2*T(n-1,k)+2*(k-1)*T(n-2,k)+T(n-3,k); with T(1,k)=1, T(2,k)=2*k+1, T(3,k)=6*k+1.
From Robert Israel, May 26 2016: (Start)
G.f. for column k: (x+(2k-1)x^2+x^3)/(1-2x+2(1-k)x^2-x^3).
The recursion for column k can be obtained from this.
G.f. for array: A(x,y) = y/(y-1) - (1-x+x^2)*y*LerchPhi(y,1,(-1+2*x+x^3)/(2*x^2))/(2*x^2). (End)
EXAMPLE
Table starts
....1.....1.....1......1......1.......1.......1.......1.......1........1
....3.....5.....7......9.....11......13......15......17......19.......21
....7....13....19.....25.....31......37......43......49......55.......61
...15....37....67....105....151.....205.....267.....337.....415......501
...33...105...217....369....561.....793....1065....1377....1729.....2121
...73...297...721...1393...2361....3673....5377....7521...10153....13321
..161...841..2377...5105...9361...15481...23801...34657...48385....65321
..355..2381..7855..18937..38171...68485..113191..175985..260947...372541
..783..6741.25939..69897.153591..295453..517371..844689.1306207..1934181
.1727.19085.85675.258521.621911.1291237.2416835.4187825.6835951.10639421
Some solutions for n=7 k=6
.-6....4....1....2...-5...-2....1....5...-5...-1....4...-3...-4...-6....0....0
..6...-4...-1...-2....5....2...-1...-5....5....1...-4....3....4....6....1....5
.-6....4....1...-4...-3....0....3....5....6...-3...-1....0...-5....0...-1...-5
.-4....2...-3....4....3...-4...-3...-5...-6....3....1....2....5....3...-1....5
..4...-2....3...-1...-3....4....4....4....1...-3....1...-2...-5...-3....1....0
.-4....3...-4....1...-6...-3...-4...-4...-1...-2...-1....3...-5....0...-1...-6
..4...-3....4...-1....6....3....0....4....1....2....1...-3....5....0....0....6
MAPLE
F:= normal @ gfun:-rectoproc({t(n) = 2*t(n-1)+2*(k-1)*t(n-2)+t(n-3), t(1)=1, t(2)=2*k+1, t(3)=6*k+1}, t(n), remember):
seq(seq(eval(F(j), k=m-j), j=1..m-1), m=2..20); # Robert Israel, May 26 2016
MATHEMATICA
nmax = 12;
col[k_] := col[k] = CoefficientList[(x + (2 k - 1) x^2 + x^3)/
(1 - 2 x + 2 (1 - k) x^2 - x^3) + O[x]^(nmax + 1), x] // Rest;
T[n_, k_] := col[k][[n]];
Table[T[n - k + 1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 24 2022 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 02 2011
STATUS
approved