OFFSET
0,3
LINKS
R. J. Mathar, The Number of Runs of Words on a 2-letter Alphabet (2021)
FORMULA
T(n,m) = T(m,n).
Sum_{m=0..n} T(n,m) = A000917(n-1) + A000984(n) = 1, 5, 26, 125, 574, ... - R. J. Mathar, Nov 09 2021
T(n,m) = binomial(n+m,n)*(2*n*m+n+m)/(n+m) for n+m >= 1.
EXAMPLE
The triangle starts
1,
1, 4,
1, 7, 18,
1, 10, 34, 80,
1, 13, 55, 155, 350,
1, 16, 81, 266, 686, 1512,
1, 19, 112, 420, 1218, 2982, 6468,
1, 22, 148, 624, 2010, 5412, 12804, 27456,
1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830,
1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Nov 08 2021
STATUS
approved