login
A349147
Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.
1
1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
OFFSET
0,3
FORMULA
T(n,m) = T(m,n).
Sum_{m=0..n} T(n,m) = A000917(n-1) + A000984(n) = 1, 5, 26, 125, 574, ... - R. J. Mathar, Nov 09 2021
T(n,m) = binomial(n+m,n)*(2*n*m+n+m)/(n+m) for n+m >= 1.
EXAMPLE
The triangle starts
1,
1, 4,
1, 7, 18,
1, 10, 34, 80,
1, 13, 55, 155, 350,
1, 16, 81, 266, 686, 1512,
1, 19, 112, 420, 1218, 2982, 6468,
1, 22, 148, 624, 2010, 5412, 12804, 27456,
1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830,
1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
CROSSREFS
Cf. A016777 (row/col 1), A000566 (row/col 2), A007584 (row/col 3), A051798 (row/col 4).
Diagonal gives A037965(n+1).
Sequence in context: A193842 A134250 A139045 * A262361 A294791 A084884
KEYWORD
nonn,tabl,easy
AUTHOR
R. J. Mathar, Nov 08 2021
STATUS
approved