login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082574
a(1)=1, a(n) = ceiling(r(3)*a(n-1)) where r(3) = (1/2)*(3 + sqrt(13)) is the positive root of X^2 = 3*X + 1.
4
1, 4, 14, 47, 156, 516, 1705, 5632, 18602, 61439, 202920, 670200, 2213521, 7310764, 24145814, 79748207, 263390436, 869919516, 2873148985, 9489366472, 31341248402, 103513111679, 341880583440, 1129154862000, 3729345169441, 12317190370324
OFFSET
1,2
COMMENTS
More generally the sequence a(1)=1, a(n) = ceiling(r(z)*a(n-1)) where r(z) = (1/2)*(z + sqrt(z^2 + 4)) is the positive root of X^2 = z*X + 1 satisfies the linear recurrence: for n > 3, a(n) = (z+1)*a(n-1) - (z-1)*a(n-2) - a(n-3) and the closed-form formula: a(n) = floor(t(z)*r(z)^n) where t(z) = (1/(2*z))*(1+(z+2)/sqrt(z^2+4)) is the positive root of z*(z^2 + 4)*X^2 = (z^2 + 4)*X + 1.
FORMULA
a(1)=1, a(2)=4, a(3)=14, a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = floor(t(3)*r(3)^n) where t(3) = (1/6)*(1 + 5/sqrt(13)) is the positive root of 39*X^2 = 13*X + 1.
G.f.: 1/((1-x)*(1-3*x-x^2)). Partial sums of A006190. - Paul Barry, Jul 10 2004
MAPLE
a:=n->sum(fibonacci(i, 3), i=0..n): seq(a(n), n=1..30); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
LinearRecurrence[{4, -2, -1}, {1, 4, 14}, 30] (* Vincenzo Librandi, Sep 12 2017 *)
Table[Sum[Fibonacci[k, 3], {k, 0, n}], {n, 1, 30}] (* G. C. Greubel, May 31 2019 *)
PROG
(PARI) Vec(1/((1-x)*(1-3*x-x^2)) + O(x^30)) \\ Michel Marcus, Sep 12 2017
(Magma) I:=[1, 4, 14]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 12 2017
(Sage) (1/((1-x)*(1-3*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 06 2003
STATUS
approved