login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273714
Number of doublerises in all bargraphs having semiperimeter n (n>=2). A doublerise in a bargraph is any pair of adjacent up steps.
3
0, 1, 4, 14, 47, 155, 508, 1662, 5438, 17809, 58395, 191732, 630373, 2075221, 6840140, 22571800, 74564874, 246568051, 816099650, 2703492238, 8963064935, 29738123605, 98735734915, 328034119098, 1090509180192, 3627343273885, 12072071392105, 40197107361740, 133910579452363
OFFSET
2,3
COMMENTS
a(n) appears to be the number of 021-avoiding ascent sequences (A022493) with exactly one repeated nonzero entry, where repeated means two consecutive equal entries. For example, a(4) = 4 counts 0011, 0110, 0112, 0122, and a(5) = 14 counts 00011, 00110, 00112, 00122, 01011, 01022, 01100, 0110 1, 01102, 01120, 01123, 0122 0, 01223, 01233. - David Callan, Nov 21 2021
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch and S. Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088 [math.CO], 2016.
FORMULA
G.f.: g = (1 - 2z - z^2 - Q)/(2Q), where Q = sqrt(1 - 4z + 2z^2 + z^4).
a(n) = Sum_{k>0} k*A273713(n,k).
From Benedict W. J. Irwin, May 29 2016: (Start)
Let y(0)=1, y(1)=2, y(2)=5, y(3)=14,
Let (n+2)*y(n) + (2*n+6)*y(n+2) - (4*n+14)*y(n+3) + (n+4)*y(n+4)=0,
a(n) = (y(n+2)-2*y(n+1)-y(n))/2.
(End)
D-finite with recurrence n*a(n) +6*(-n+1)*a(n-1) +9*(n-2)*a(n-2) -6*a(n-3) +(-n+8) * a(n-4) +2*(-n+4)*a(n-5) +(-n+6)*a(n-6)=0. - R. J. Mathar, Jun 06 2016
EXAMPLE
a(4) = 4 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0, 0, 1, 1, 2 doublerises.
MAPLE
g := ((1-2*z-z^2-sqrt(1-4*z+2*z^2+z^4))*(1/2))/sqrt(1-4*z+2*z^2+z^4): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
MATHEMATICA
F[k_] := DifferenceRoot[Function[{y, n}, {(2 + n) y[n] + (6 + 2 n) y[2 + n] + (-14 - 4 n) y[3 + n] + (4 + n) y[4 + n] == 0, y[0] == 1, y[1] == 2, y[2] == 5, y[3] == 14}]][k]; Table[1/2 (-F[n] - 2 F[n + 1] + F[n + 2]), {n, 0, 20}] (* Benedict W. J. Irwin, May 29 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 28 2016
STATUS
approved