login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273715
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k peaks of width 1 (i.e., UHD configurations, where U=(0,1), H(1,0), D=(0,-1)), (n>=2, k>=0).
2
0, 1, 1, 1, 2, 3, 5, 8, 13, 21, 1, 34, 57, 6, 90, 158, 27, 241, 445, 107, 1, 652, 1269, 396, 10, 1780, 3655, 1404, 66, 4899, 10611, 4838, 356, 1, 13581, 31002, 16344, 1700, 15, 37893, 91048, 54429, 7482, 135, 106340, 268536, 179332, 31070, 940, 1
OFFSET
2,5
COMMENTS
Sum of entries in row n = A082582(n).
Sum(k*T(n,k),k>=1) = A273716(n).
LINKS
M. Bousquet-Mélou and A. Rechnitzer The site-perimeter of bargraphs Adv. Appl. Math., 31, 2003, 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: G(t,z) satisfies z*G^2 - (1-2*z-z^2-z^3+t*z^3)G + z^2*(t+z-t*z) = 0.
EXAMPLE
Row 4 is 2,3 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have 0,1,1,0,1 peaks of width 1.
Triangle T(n,k) begins:
: 0, 1;
: 1, 1;
: 2, 3;
: 5, 8;
: 13, 21, 1;
: 34, 57, 6;
: 90, 158, 27;
: 241, 445, 107, 1;
: 652, 1269, 396, 10;
MAPLE
eq := z*G^2-(1-2*z-z^2-z^3+t*z^3)*G+z^2*(t+z-t*z) = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t, h) option remember; expand(
`if`(n=0, (1-t)*z^h, `if`(t<0, 0, b(n-1, y+1, 1, 0))+
`if`(t>0 or y<2, 0, b(n, y-1, -1, 0)*z^h)+
`if`(y<1, 0, b(n-1, y, 0, `if`(t>0, 1, 0)))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=2..20); # Alois P. Heinz, Jun 06 2016
MATHEMATICA
b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[ If[n == 0, (1 - t)*z^h, If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]*z^h] + If[y < 1, 0, b[n - 1, y, 0, If[t > 0, 1, 0]]]]] ; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *)
CROSSREFS
Sequence in context: A005347 A100582 A193616 * A093093 A345095 A281408
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 28 2016
STATUS
approved