login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273717
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k L-shaped corners (n>=2, k>=0).
2
1, 2, 4, 1, 8, 5, 16, 18, 1, 32, 56, 9, 64, 160, 50, 1, 128, 432, 220, 14, 256, 1120, 840, 110, 1, 512, 2816, 2912, 645, 20, 1024, 6912, 9408, 3150, 210, 1, 2048, 16640, 28800, 13552, 1575, 27, 4096, 39424, 84480, 53088, 9534, 364, 1, 8192, 92160, 239360, 193440, 49644, 3388, 35, 16384, 212992, 658944, 665280, 231000, 24822, 588
OFFSET
2,2
COMMENTS
Each L-shaped corner can be viewed as a descent (as defined in Sec. 5.1 of the Blecher et al. reference). - Emeric Deutsch, Jul 02 2016
REFERENCES
A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. Appl. Math., 31, 2003, 86-112.
Emeric Deutsch and S. Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088 [math.CO], 2016.
FORMULA
G.f.: G = G(t,z) satisfies t*z*G^2 - (1 - 2*z - t*z^2)*G + z^2 = 0.
Sum_{k>=1} k*T(n,k) = A273718(n).
T(n,0) = 2^(n-2).
T(n,1) = n*(n-3)*2^(n-6) = A001793(n-3) for n>=4.
EXAMPLE
Row 4 is 4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] of which only [2,1] yields a |_ - shaped corner.
Triangle starts:
1;
2;
4,1;
8,5;
16,18,1.
MAPLE
eq := t*z*G^2-(1-2*z-t*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+
`if`(t>0 or y<2, 0, b(n, y-1, -1))+
`if`(y<1, 0, b(n-1, y, 0)*`if`(t<0, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=2..18); # Alois P. Heinz, Jun 06 2016
MATHEMATICA
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t < 0, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 18}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)
CROSSREFS
Sum of entries in row n = A082582(n).
Sequence in context: A112829 A378996 A121466 * A258065 A065290 A065266
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 29 2016
STATUS
approved