The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273719 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k horizontal steps in the peaks (n>=2, k>=1). 4
 1, 1, 1, 3, 1, 1, 8, 3, 1, 1, 21, 9, 3, 1, 1, 55, 27, 10, 3, 1, 1, 144, 82, 33, 11, 3, 1, 1, 377, 251, 110, 39, 12, 3, 1, 1, 987, 770, 368, 139, 45, 13, 3, 1, 1, 2584, 2358, 1229, 495, 169, 51, 14, 3, 1, 1, 6765, 7191, 4085, 1755, 632, 200, 57, 15, 3, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS Number of entries in row n is n-1. Sum of entries in row n = A082582(n). T(n,1) = A088305(n-2) = F(2n-4) where F(n) are the Fibonacci numbers A000045. Sum(k*T(n,k), k>=0) = A273720(n). LINKS Alois P. Heinz, Rows n = 2..150, flattened A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103. M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112. FORMULA G.f.: G(s,z), where s marks number of horizontal steps in the peaks and z marks semiperimeter, satisfies the equation given in the Maple program. G.f.: G(w,z), where w marks number of horizontal steps in the peaks and z marks semiperimeter, satisfies eq. (7) of the Blecher et al. reference, where one has to set x = z and y = z. The trivariate g.f. G = G(t,s,z), where t marks number of peaks, s marks number of horizontal steps in the peaks, and z marks semiperimeter, satisfies z*(1-z)*(1-s*z)*G^2-(1-3*z-s*z+z^2+3*s*z^2-s*z^3+t*s*z^3-t*s*z^4)*G + t*s*z^2*(1-z)^2 = 0. EXAMPLE Row 4 is 3,1,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding drawings show that they have 3,1,1,2,1 horizontal steps in their peaks. Triangle starts 1; 1,1; 3,1,1; 8,3,1,1; 21,9,3,1,1 MAPLE eq := G = z^2*s+z*(G-z^2*s/(1-z*s)+z^2*s^2/(1-z*s))+z*G+z^2*G+z*G*(G-z^2*s/(1-z*s)+z^2/(1-z)): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 2 to 16 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 16 do seq(coeff(P[n], s, j), j = 1 .. n-1) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, y, t, h) option remember; expand( `if`(n=0, (1-t)*z^h, `if`(t<0, 0, b(n-1, y+1, 1, 0))+ `if`(t>0 or y<2, 0, b(n, y-1, -1, 0)*z^h)+ `if`(y<1, 0, b(n-1, y, 0, `if`(max(h, t)>0, h+1, 0))))) end: T:= n-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(n, 0\$3)): seq(T(n), n=2..16); # Alois P. Heinz, Jun 06 2016 MATHEMATICA b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[If[n == 0, (1 - t)*z^h, If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]*z^h] + If[y < 1, 0, b[n - 1, y, 0, If[Max[h, t] > 0, h + 1, 0]]]]]; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 1, n - 1}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 16}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *) CROSSREFS Cf. A000045, A088305, A082582, A273720. Sequence in context: A348693 A198618 A121461 * A274488 A351889 A203717 Adjacent sequences: A273716 A273717 A273718 * A273720 A273721 A273722 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Jun 01 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)