login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193957
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=sum{(k+1)(n+1)*x^(n-k) : 0<=k<=n}.
2
1, 1, 1, 2, 3, 5, 3, 5, 9, 14, 4, 7, 13, 21, 34, 5, 9, 17, 28, 46, 74, 6, 11, 21, 35, 58, 94, 152, 7, 13, 25, 42, 70, 114, 185, 299, 8, 15, 29, 49, 82, 134, 218, 353, 571, 9, 17, 33, 56, 94, 154, 251, 407, 659, 1066, 10, 19, 37, 63, 106, 174, 284, 461, 747, 1209
OFFSET
0,4
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1...1
2...3...5
3...5...9....14
4...7...13...21...34
5...9...17...28...46...74
MATHEMATICA
z = 12;
p[n_, x_] := x*p[n - 1, x] + n + 1; p[0, x_] := 1 ;
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193957 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193958 *)
CROSSREFS
Sequence in context: A261324 A224887 A151571 * A336746 A209769 A114230
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved