The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336746 Triangle read by rows: T(n,k) = (n-k-1+H(k+1))*((k+1)!) for 0 <= k <= n where H(k+1) = Sum_{i=0..k} 1/(i+1) for k >= 0. 0
 0, 1, 1, 2, 3, 5, 3, 5, 11, 26, 4, 7, 17, 50, 154, 5, 9, 23, 74, 274, 1044, 6, 11, 29, 98, 394, 1764, 8028, 7, 13, 35, 122, 514, 2484, 13068, 69264, 8, 15, 41, 146, 634, 3204, 18108, 109584, 663696, 9, 17, 47, 170, 754, 3924, 23148, 149904, 1026576, 6999840 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA T(n,k) = T(n,k-1) + k * T(n-1,k-1) for 0 < k <= n with initial values T(n,0) = n for n >= 0 and T(i,j) = 0 if j < 0 or j > i. T(n,k) = k! + T(n-1,k-1) * (k+1) for 0 < k <= n. T(n,k) = (k+1)! + T(n-1,k) for 0 <= k < n. E.g.f. of main diagonal (case n=0) and n-th subdiagonal (n>0): Sum_{k>=0} T(n+k,k) * x^k / k! = (n - log(1-x)) / (1-x)^2 for n >= 0. G.f. of column k>=0: Sum_{n>=k} T(n,k) * y^n = (T(k,k) * y^k + ((k+1)! - T(k,k)) * y^(k+1)) / (1-y)^2. G.f.: Sum_{n>=0, k=0..n} T(n,k)*x^k*y^n/k! = (y - (1-y) * log(1-x*y)) / ((1-y)^2 * (1-x*y)^2). EXAMPLE The triangle starts: n\k :  0   1   2    3    4     5      6       7        8        9 =================================================================   0 :  0   1 :  1   1   2 :  2   3   5   3 :  3   5  11   26   4 :  4   7  17   50  154   5 :  5   9  23   74  274  1044   6 :  6  11  29   98  394  1764   8028   7 :  7  13  35  122  514  2484  13068   69264   8 :  8  15  41  146  634  3204  18108  109584   663696   9 :  9  17  47  170  754  3924  23148  149904  1026576  6999840 ... CROSSREFS Cf. A001477 (column 0), A005408 (column 1), A016969 (column 2), A001705 (main diagonal), A000254 (1st subdiagonal), A000774 (2nd subdiagonal). Sequence in context: A224887 A151571 A193957 * A209769 A114230 A209753 Adjacent sequences:  A336743 A336744 A336745 * A336747 A336748 A336749 KEYWORD nonn,easy,tabl AUTHOR Werner Schulte, Aug 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)