login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010171 Continued fraction for sqrt(103). 2
10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..999

G. Xiao, Contfrac

Index entries for continued fractions for constants

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,1).

FORMULA

a(n) = (1/264)*(-291*(n mod 12) - 93*((n+1) mod 12) + 39*((n+2) mod 12) - 5*((n+3) mod 12) + 17*((n+4) mod 12) + 193*((n+5) mod 12) - 159*((n+6) mod 12) + 17*((n+7) mod 12) + 39*((n+8) mod 12) - 5*((n+9) mod 12) + 127*((n+10) mod 12) + 325*((n+11) mod 12)) - 10*(C(2*n,n) mod 2), with n >= 0. - Paolo P. Lava, Jul 24 2009

MATHEMATICA

ContinuedFraction[Sqrt[103], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)

PROG

(Python)

from sympy import sqrt

from sympy.ntheory.continued_fraction import continued_fraction_iterator

def aupton(terms):

gen = continued_fraction_iterator(sqrt(103))

return [next(gen) for i in range(terms)]

print(aupton(85)) # Michael S. Branicky, Oct 06 2021

CROSSREFS

Cf. A187768 (sqrt(103)).

Sequence in context: A276348 A281400 A283726 * A006518 A094175 A193952

Adjacent sequences: A010168 A010169 A010170 * A010172 A010173 A010174

KEYWORD

nonn,cofr

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)