|
|
A010171
|
|
Continued fraction for sqrt(103).
|
|
2
|
|
|
10, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..999
G. Xiao, Contfrac
Index entries for continued fractions for constants
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,1).
|
|
FORMULA
|
a(n) = (1/264)*(-291*(n mod 12) - 93*((n+1) mod 12) + 39*((n+2) mod 12) - 5*((n+3) mod 12) + 17*((n+4) mod 12) + 193*((n+5) mod 12) - 159*((n+6) mod 12) + 17*((n+7) mod 12) + 39*((n+8) mod 12) - 5*((n+9) mod 12) + 127*((n+10) mod 12) + 325*((n+11) mod 12)) - 10*(C(2*n,n) mod 2), with n >= 0. - Paolo P. Lava, Jul 24 2009
|
|
MATHEMATICA
|
ContinuedFraction[Sqrt[103], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)
|
|
PROG
|
(Python)
from sympy import sqrt
from sympy.ntheory.continued_fraction import continued_fraction_iterator
def aupton(terms):
gen = continued_fraction_iterator(sqrt(103))
return [next(gen) for i in range(terms)]
print(aupton(85)) # Michael S. Branicky, Oct 06 2021
|
|
CROSSREFS
|
Cf. A187768 (sqrt(103)).
Sequence in context: A276348 A281400 A283726 * A006518 A094175 A193952
Adjacent sequences: A010168 A010169 A010170 * A010172 A010173 A010174
|
|
KEYWORD
|
nonn,cofr
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|