login
A283726
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
12
0, 0, 0, 0, 0, 0, 0, 10, 6, 0, 0, 60, 159, 36, 0, 0, 242, 1088, 1304, 176, 0, 0, 1032, 7839, 15228, 9819, 824, 0, 0, 4220, 56106, 185564, 196548, 69972, 3668, 0, 0, 16376, 369328, 2258212, 4096541, 2391696, 478164, 15808, 0, 0, 62564, 2391828, 25260000
OFFSET
1,8
COMMENTS
Table starts
.0.....0........0..........0............0...............0.................0
.0.....0.......10.........60..........242............1032..............4220
.0.....6......159.......1088.........7839...........56106............369328
.0....36.....1304......15228.......185564.........2258212..........25260000
.0...176.....9819.....196548......4096541........83987692........1590274565
.0...824....69972....2391696.....85216204......2938694472.......94357463834
.0..3668...478164...28103560...1712274593.....99246546144.....5410290101514
.0.15808..3182364..322050940..33562500568...3267618010712...302490564406270
.0.66640.20764075.3622197748.645693322870.105565418525004.16600142770401845
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 10]
k=3: [order 20]
k=4: [order 28]
k=5: [order 80]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: [order 10]
n=3: [order 22]
n=4: [order 46]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0. .1..0..1..1. .0..1..0..1. .0..0..1..0. .1..0..1..0
..1..1..0..0. .1..0..0..0. .1..1..0..0. .0..1..0..0. .1..1..0..1
..1..0..1..1. .0..0..1..1. .1..0..0..1. .1..1..0..0. .0..1..0..0
..1..0..1..0. .1..1..1..0. .0..1..1..1. .0..1..0..1. .0..0..1..0
CROSSREFS
Column 2 is A283197.
Sequence in context: A241439 A276348 A281400 * A370388 A010171 A006518
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 15 2017
STATUS
approved