login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276348
a(n) = the smallest number k such that k*n is a number with a string of 1's followed by a string of 0's.
4
10, 5, 370, 25, 2, 185, 158730, 125, 123456790, 1, 10, 925, 85470, 79365, 74, 625, 653594771241830, 61728395, 58479532163742690, 5, 52910, 5, 483091787439613526570, 4625, 4, 42735, 41152263374485596707818930, 396825, 383141762452107279693486590, 37
OFFSET
1,1
COMMENTS
a(n) = the smallest number k such that k*n is a number from A276349.
a(n) > 0 for all n.
REFERENCES
L. Pick, Dirichletovy šuplíčky. Pokroky matematiky, fyziky & astronomie; 2 (2016), 106-118. (In Czech; The Dirichlet pigeonhole principle)
LINKS
FORMULA
a(n) = A052983(n)/n.
From Robert Israel, Aug 30 2016: (Start)
Let n = 2^b*5^c*m where GCD(m,10)=1, and q = A084680(9*m).
If b=c=0 let d=1, otherwise d=max(b,c).
Then a(n) = 2^(d-a)*5^(d-b)*(10^q-1)/(9*m). (End)
EXAMPLE
For n=3; 3*370 = 1110 (term of A276349).
MAPLE
f:= proc(n) local b, c, d, m, q;
b:= padic:-ordp(n, 2); c:= padic:-ordp(n, 5); if b+c=0 then d:= 1 else d:= max(b, c) fi; m:= n/2^b/5^c; q:= numtheory:-order(10, 9*m);
2^(d-b)*5^(d-c)*(10^q-1)/(9*m)
end proc:
map(f, [$1..100]); # Robert Israel, Aug 30 2016
MATHEMATICA
Table[k = 1; While[! If[Length@ # == 2, Flatten@ Map[Union, #] == {1, 0}, False] &@ Split@ IntegerDigits[k n], k++]; k, {n, 8}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Magma) a:=10; S:=[a]; for n in [2..6] do k:=0; flag:= true; while flag do k+:=1; if [k*n] subset [n: n in [1..10000] | Seqint(Setseq(Set(Sort(Intseq(n))))) eq 10 and Seqint(Sort((Intseq(n)))) eq n] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Aug 30 2016
STATUS
approved