login
Continued fraction for sqrt(103).
2

%I #42 Mar 25 2024 15:00:20

%S 10,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,

%T 2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,

%U 9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20

%N Continued fraction for sqrt(103).

%H Vincenzo Librandi, <a href="/A010171/b010171.txt">Table of n, a(n) for n = 0..999</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,1).

%t ContinuedFraction[Sqrt[103],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2011 *)

%t PadRight[{10},120,{20,6,1,2,1,1,9,1,1,2,1,6}] (* _Harvey P. Dale_, Mar 25 2024 *)

%o (Python)

%o from sympy import sqrt

%o from sympy.ntheory.continued_fraction import continued_fraction_iterator

%o def aupton(terms):

%o gen = continued_fraction_iterator(sqrt(103))

%o return [next(gen) for i in range(terms)]

%o print(aupton(85)) # _Michael S. Branicky_, Oct 06 2021

%Y Cf. A187768 (sqrt(103)).

%K nonn,cofr

%O 0,1

%A _N. J. A. Sloane_