%I #42 Mar 25 2024 15:00:20
%S 10,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,
%T 2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,
%U 9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20
%N Continued fraction for sqrt(103).
%H Vincenzo Librandi, <a href="/A010171/b010171.txt">Table of n, a(n) for n = 0..999</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,1).
%t ContinuedFraction[Sqrt[103],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2011 *)
%t PadRight[{10},120,{20,6,1,2,1,1,9,1,1,2,1,6}] (* _Harvey P. Dale_, Mar 25 2024 *)
%o (Python)
%o from sympy import sqrt
%o from sympy.ntheory.continued_fraction import continued_fraction_iterator
%o def aupton(terms):
%o gen = continued_fraction_iterator(sqrt(103))
%o return [next(gen) for i in range(terms)]
%o print(aupton(85)) # _Michael S. Branicky_, Oct 06 2021
%Y Cf. A187768 (sqrt(103)).
%K nonn,cofr
%O 0,1
%A _N. J. A. Sloane_