|
|
A010173
|
|
Continued fraction for sqrt(107).
|
|
4
|
|
|
10, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..999
G. Xiao, Contfrac
Index entries for continued fractions for constants
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
|
|
FORMULA
|
a(n) = (1/18)*(-47*(n mod 6) + 4*((n+1) mod 6) + 31*((n+2) mod 6) - 17*((n+3) mod 6) + 10*((n+4) mod 6) + 61*((n+5) mod 6)) - 10*(C(2*n,n) mod 2), with n >= 0. - Paolo P. Lava, Jul 24 2009
G.f.: (-10*x^6 - 2*x^5 - x^4 - 9*x^3 - x^2 - 2*x - 10)/(x^6 - 1). - Chai Wah Wu, Oct 02 2021
|
|
MATHEMATICA
|
ContinuedFraction[Sqrt[107], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2011 *)
|
|
PROG
|
(Python)
from sympy import sqrt
from sympy.ntheory.continued_fraction import continued_fraction_iterator
def aupton(terms):
gen = continued_fraction_iterator(sqrt(107))
return [next(gen) for i in range(terms)]
print(aupton(82)) # Michael S. Branicky, Oct 02 2021
|
|
CROSSREFS
|
Cf. A177935 (decimal expansion), A041192/A041193 (convergents).
Sequence in context: A040097 A010174 A073755 * A357339 A259712 A343103
Adjacent sequences: A010170 A010171 A010172 * A010174 A010175 A010176
|
|
KEYWORD
|
nonn,cofr,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|