

A073755


Number of steps needed to reach a prime when the following map is repeatedly applied to n: if n is even then 2n + int(sqrt(n)) + 1, otherwise 2n  int(sqrt(n))  1; or 1 if no prime is ever reached.


5



10, 2, 1, 1, 9, 1, 1, 4, 2, 2, 5, 28, 3, 8, 1, 1, 1, 17, 2, 1, 27, 1, 1, 34, 7, 2, 4, 12, 4, 3, 2, 16, 2, 2, 1, 1, 1, 1, 12, 4, 9, 1, 33, 1, 6, 12, 1, 26, 2, 16, 11, 5, 21, 4, 2, 2, 6, 8, 15, 2, 3, 6, 1, 11, 3, 27, 2, 4, 1, 15, 2, 1, 1, 3, 12, 2, 2, 1, 8, 2, 7, 3, 6, 3, 16, 11, 4, 2, 25, 8, 4, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS



EXAMPLE

For n=3, a(3)=2 because 3 > 4 > 11


PROG

(UBASIC)
10 cls
30 for I=2 to 100
32 H=I
40 if odd(H)=1 then goto 90 else goto 50
50 A=2*H+int(sqrt(H))+1:K=K+1
60 if prmdiv(A)=A then print I, K:goto 120
65 if K>1000 then print I, 0:goto 120
70 H=A:goto 40
90 A=2*Hint(sqrt(H))1:K=K+1
100 if prmdiv(A)=A then print I, K:goto 120
105 if K>1000 then print I, 0:goto 120
110 H=A:goto 40
120 K=0
130 next


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



STATUS

approved



