login
A048472
Array T by antidiagonals, T(k,n)=(k+1)*n*2^(n-1)+1, n >= 0, k >= 1.
11
1, 2, 1, 5, 3, 1, 13, 9, 4, 1, 33, 25, 13, 5, 1, 81, 65, 37, 17, 6, 1, 193, 161, 97, 49, 21, 7, 1, 449, 385, 241, 129, 61, 25, 8, 1, 1025, 897, 577, 321, 161, 73, 29, 9, 1, 2305, 2049, 1345, 769, 401, 193, 85, 33, 10, 1, 5121, 4609, 3073
OFFSET
0,2
COMMENTS
n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is (k+1)n, for n=1,2,3,...; k=0,1,2,...
EXAMPLE
Antidiagonals: {1}; {2,1}; {5,3,1}; ...
PROG
(PARI) T(n, k)=if(n<0 || k<1, 0, k*n*2^(n-1)+1)
CROSSREFS
See A049069 for transposed array.
Row 1 = (1, 2, 5, 13, 33, ...) = A005183.
Row 2 = (1, 3, 9, 25, 65, ...) = A002064.
Sequence in context: A047858 A125171 A280784 * A038622 A193954 A162997
KEYWORD
nonn,tabl,easy
EXTENSIONS
Better description from Michael Somos
STATUS
approved