|
|
A010032
|
|
Weight distribution of binary (16,256,6) nonlinear Nordstrom-Robinson code.
|
|
3
|
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 74.
|
|
LINKS
|
Table of n, a(n) for n=0..8.
J. H. Conway and N. J. A. Sloane, Orbit and coset analysis of the Golay and related codes, IEEE Trans. Inform. Theory, 36 (1990), 1038-1050.
A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The Z_4 linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
|
|
CROSSREFS
|
Cf. A109737.
Sequence in context: A341011 A103849 A340470 * A190026 A129947 A217148
Adjacent sequences: A010029 A010030 A010031 * A010033 A010034 A010035
|
|
KEYWORD
|
nonn,fini,full
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|