login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010031
Weight distribution of any one of the five doubly-even binary [32,16,8] codes (quadratic residue, Reed-Muller, etc.).
1
1, 0, 620, 13888, 36518, 13888, 620, 0, 1
OFFSET
0,3
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 443.
LINKS
E. R. Berlekamp and N. J. A. Sloane, Weight Enumerator for Second-Order Reed-Muller Codes, IEEE Trans. Information Theory, IT-16 (1970), 745-751.
J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
J. H. Conway, V. S. Pless, and N. J. A. Sloane, The binary self-dual codes of length up to 32: a revised enumeration, J. Combin. Theory, A 60 (1992), 183-195.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745; arXiv preprint, arXiv:math/0509316 [math.NT], 2005-2006.
M. Terada, J. Asatani and T. Koumoto, Weight Distribution
EXAMPLE
x^32+620*x^24*y^8+13888*x^20*y^12+36518*x^16*y^16+13888*x^12*y^20+620*x^8*y^24+y^32
CROSSREFS
Sequence in context: A182351 A335961 A202239 * A252527 A232422 A335767
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved