login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085838
Triangle T(n,k) read by rows; given by [0,1,0,1,0,1,0,1,...] DELTA [1,1,1,2,1,3,1,4,1,5,1,6,...], where DELTA is Deléham's operator defined in A084938.
4
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 22, 15, 0, 1, 14, 60, 98, 52, 0, 1, 20, 130, 366, 457, 203, 0, 1, 27, 245, 1031, 2190, 2254, 877, 0, 1, 35, 420, 2436, 7652, 13251, 11788, 4140, 0, 1, 44, 672, 5096, 21862, 55499, 82288, 65330, 21147, 0, 1, 54, 1020, 9744, 54216, 186595, 402582, 528400, 382948, 115975
OFFSET
0,6
COMMENTS
T(n,k) appears to be the number of indecomposable permutations of [n+1] that avoid both of the dashed patterns 41-32 and 32-41 and contain n+1-k right-to-left minima. For example, T(3,1)=1 counts 4123 with 3 right-to-left minima; T(3,2)=5 counts 2413, 3142, 3412, 4213, 4312, each with 2 right-to-left minima; and T(3,3)=5 counts 2341, 2431, 3421, 4231, 4321, each with 1 right-to-left minimum. - David Callan, Aug 27 2014
LINKS
FORMULA
Sum_{k=0..n} (-x)^(n-k)*T(n,k) = A090365(n), A000110(n), A000012(n), A010892(n) for x=-1, 0, 1, 2. - Philippe Deléham, Oct 26 2006
EXAMPLE
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 9, 22, 15;
0, 1, 14, 60, 98, 52;
0, 1, 20, 130, 366, 457, 203;
0, 1, 27, 245, 1031, 2190, 2254, 877;
0, 1, 35, 420, 2436, 7652, 13251, 11788, 4140;
MATHEMATICA
m = 13;
(* DELTA is defined in A084938 *)
DELTA[Table[{0, 1}, {m/2 // Ceiling}] // Flatten, LinearRecurrence[{0, 2, 0, -1}, {1, 1, 1, 2}, m], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
CROSSREFS
Diagonals : A000007, A000012, A000096, A000110. Row sums : A090365
Sequence in context: A201910 A109450 A086810 * A094456 A010028 A151860
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 16 2003
STATUS
approved