login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001266
One-half the number of permutations of length n without rising or falling successions.
(Formerly M4426 N1871)
6
0, 0, 1, 7, 45, 323, 2621, 23811, 239653, 2648395, 31889517, 415641779, 5830753109, 87601592187, 1403439027805, 23883728565283, 430284458893701, 8181419271349931, 163730286973255373, 3440164703027845395, 75718273707281368117, 1742211593431076483419
OFFSET
2,4
COMMENTS
(1/2) times number of permutations of 12...n such that none of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).
a(n) is also the number of Hamiltonian paths in the n-path complement graph. - Eric W. Weisstein, Apr 11 2018
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 2..450 (first 199 terms from Alois P. Heinz)
J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710.
Eric Weisstein's World of Mathematics, Hamiltonian Path
Eric Weisstein's World of Mathematics, Path Complement Graph
FORMULA
a(n) = A002464(n)/2.
(1/2) times coefficient of t^0 in S[n](t) defined in A002464.
MAPLE
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
[n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
-(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
end:
a:= n-> coeff(S(n), t, 0)/2:
seq(a(n), n=2..25); # Alois P. Heinz, Jan 11 2013
MATHEMATICA
S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 0]/2; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
CoefficientList[Series[((Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)])/((-1 + x) x) - x - 1)/(2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a[0] == a[1] == 1/2,
a[2] == a[3] == 0}, a, {n, 2, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
CROSSREFS
Sequence A002464 divided by 2 for n >= 2. A diagonal of A010028.
Sequence in context: A103719 A134437 A018927 * A071971 A370253 A337553
KEYWORD
nonn
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 16 2001
STATUS
approved