login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

One-half the number of permutations of length n without rising or falling successions.
(Formerly M4426 N1871)
6

%I M4426 N1871 #37 Oct 27 2023 19:08:49

%S 0,0,1,7,45,323,2621,23811,239653,2648395,31889517,415641779,

%T 5830753109,87601592187,1403439027805,23883728565283,430284458893701,

%U 8181419271349931,163730286973255373,3440164703027845395,75718273707281368117,1742211593431076483419

%N One-half the number of permutations of length n without rising or falling successions.

%C (1/2) times number of permutations of 12...n such that none of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%C a(n) is also the number of Hamiltonian paths in the n-path complement graph. - _Eric W. Weisstein_, Apr 11 2018

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A001266/b001266.txt">Table of n, a(n) for n = 2..450</a> (first 199 terms from Alois P. Heinz)

%H J. Riordan, <a href="http://projecteuclid.org/euclid.aoms/1177700181">A recurrence for permutations without rising or falling successions</a>, Ann. Math. Statist. 36 (1965), 708-710.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>

%F a(n) = A002464(n)/2.

%F (1/2) times coefficient of t^0 in S[n](t) defined in A002464.

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p a:= n-> coeff(S(n), t, 0)/2:

%p seq(a(n), n=2..25); # _Alois P. Heinz_, Jan 11 2013

%t S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 0]/2; Table[a[n], {n, 2, 25}] (* _Jean-François Alcover_, Mar 24 2014, after _Alois P. Heinz_ *)

%t CoefficientList[Series[((Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)])/((-1 + x) x) - x - 1)/(2 x), {x, 0, 20}], x] (* _Eric W. Weisstein_, Apr 11 2018 *)

%t RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a[0] == a[1] == 1/2,

%t a[2] == a[3] == 0}, a, {n, 2, 20}] (* _Eric W. Weisstein_, Apr 11 2018 *)

%Y Sequence A002464 divided by 2 for n >= 2. A diagonal of A010028.

%K nonn

%O 2,4

%A _N. J. A. Sloane_

%E More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 16 2001